This article was downloaded by: [Tomsk State University of Control Systems and Radio]

On: 18 February 2013, At: 11:19

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/gmcl19

New Charge-Transfer Complex-Based Organic Ferromagnets: Pyridinium-Substitued Imidazolin-1-Oxyl/ Tetrafluorotetracyanoquinodimethanide or Hexacyanobutadienide Salts

Toyonari Sugimoto a , Masaya Tsujii a , Takehito Suga a , Nobuyoshi Hosoito b , Masaya Ishikawa c , Naoya Takeda c & Motoo Shiro d

To cite this article: Toyonari Sugimoto, Masaya Tsujii, Takehito Suga, Nobuyoshi Hosoito, Masaya Ishikawa, Naoya Takeda & Motoo Shiro (1995): New Charge-Transfer Complex-Based Organic Ferromagnets: Pyridinium-Substitued Imidazolin-1-Oxyl/ Tetrafluorotetracyanoquinodimethanide or Hexacyanobutadienide Salts, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 272:1, 183-194

To link to this article: http://dx.doi.org/10.1080/10587259508055287

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any

^a Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Yoshida, Kyoto, 606, Japan

^b Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611, Japan

^c The Institute for Solid State Physics, The University of Tokyo, Roppongi, Tokyo, 106, Japan

^d Rigaku Corporation, Akishima, Tokyo, 196, Japan Version of record first published: 05 Dec 2006.

instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NEW CHARGE-TRANSFER COMPLEX-BASED ORGANIC FERROMAGNETS: PYRIDINIUM-SUBSTITUTED IMIDAZOLIN-1-OXYL/TETRAFLUOROTETRACYANOQUINODIMETHANIDE OR HEXACYANOBUTADIENIDE SALTS

TOYONARI SUGIMOTO, MASAYA TSUJII, AND TAKEHITO SUGA Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Yoshida, Kyoto 606, Japan

NOBUYOSHI HOSOITO

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

MASAYA ISHIKAWA AND NAOYA TAKEDA

The Institute for Solid State Physics, The University of Tokyo, Roppongi, Tokyo 106, Japan

MOTOO SHIRO

Rigaku Corporation, Akishima, Tokyo 196, Japan

abstract The charge-transfer (CT) complexes of a series of 4,4,5,5-tetramethylimidazolin-1-oxyls substituted with 4-(N-alkylpyridinium) groups at the 2-position with two radical anions, tetrafluorotetracyanoquinodimethanide (TCNQF4⁻⁻) and hexacyanobutadienide (HCBD⁻⁻) were prepared and their magnetic properties were investigated in the temperature range of 5 to 300 K. Ferromagnetic interaction was observed for the three CT complexes. Furthermore, the magnetic measurement at lower temperatures than 5 K showed that these CT complexes exhibited a ferromagnetic phase transition between 0.4 and 0.55 K. Consequently, the present CT complexes make a group of another type of organic ferromagnets without any magnetic metal elements.

INTRODUCTION

The development of molecular/organic ferromagnets exhibiting three-dimensional spin alignment in the same direction at reasonable temperatures now continues to lay a challenging subject upon chemists and physicists in several fields.¹ Since the first discovery of ferromagnetic interaction in a galvinoxyl crystal,² similar phenomena have also been recognized in almost 20 organic radical crystals for the last few years.³ Very recently, a purely organic ferromagnet has at last been synthesized in a *p*-nitrophenyl nitroxyl nitroxide crystal⁴ and successively in several nitroxide crystals.⁵⁻⁸ In contrast, there is so far almost no progress in the achievement of ferromagnetism based on two different spins of radical cation and radical anion in purely organic CT complexes, in spite

of a great success in metallocene/tetracyanoethylene or tetracyanoquinodimethane CT systems, 9-12 in which metal d electrons play an essential role. Now we invetsigated the synthesis of stable and definitively characterized CT complexes and their magnetic properties till low temperatures with aim at the discovery of new purely organic ferromagnets.

SYNTHESIS OF CT COMPLEXES OF 2-[4-(N-ALKYL PYRIDINIUM)]IMIDAZOLIN-1-OXYLS WITH TETRAFLUORO-TETRACYANOQUINODIMETHANIDE AND HEXACYANOBUTADIENIDE

The CT complexes of a series of 4,4,5,5-tetramethylimidazolin-1-oxyls substituted with 4-[N-alkyl(R)] pyridinium] groups $(1(R)^{+}: R=Me, Et, n-Pr, n-Bu)$ at the 2-position with TCNQF4⁻⁻ and HCBD⁻⁻ were preapred by mixing aqueous solutions of the iodide salt of $1(R)^{+}$ and of the lithium salt of TCNQF4⁻⁻ or the sodium salt of HCBD⁻⁻ in equal concentrations at r.t. The CT complexes of $1(R)^{+}$ with TCNQF4⁻⁻ and HCBD⁻⁻ were

colored blue and blackish brown, respectively. The elemental analyses showed a 1:1 composition of the radical cation and the radical anion for all CT complexes. 13 Of the CT complexes only $1(Me)^{+}$. TCNQF4- was obtained by recrystallization from acetone/petroleum ether as the single crystal, whose crystal structure analysis was successfully performed. The crystal structure is shown in Figure 1(a). The crystal has an alternating stacking of $1(Me)^{+}$ and TCNQF4- layers along the b axis direction. Within each TCNQF4- layer the two neighboring TCNQF4- molecules form a tight dimer structure as evidenced from the closer face-to-face contact (3.188 Å) than a normal π -cloud

thickness (3.536 Å) as seen between the dimer units related by an inversion center. The contact between one TCNQF4⁻⁻ molecule and $1(Me)^{+-}$ molecules in its proximity can be visualized by Figure 1(b). Thus, within each $1(Me)^{+-}$ layer one NO group of $1(Me)^{+-}$ molecule is connected with the NO groups by aid of the interaction with one TCNQF4⁻⁻ molecule in close proximity, resulting in a one-dimensional spin chain along the c axis direction. This one-diemensional spin chain also interacts with its neighboring ones by aid of the same TCNQF4⁻⁻ molecule. As a result each of the two-dimensional spin network is completed within the b-c plane and furthermore extended to the a axis direction through the interaction with the neighboring networks again by aid of the same TCNQF4⁻⁻ binder. It should be noted that the oxygen atom of NO group is disordered. The arrangement of oxygen atom as shown in Figure 1 has a preference for the reversed one, and the ratio is 83.7: 16.3. This fact must be taken into consideration in understanding the magnetic properties of this CT complex and the other ones.

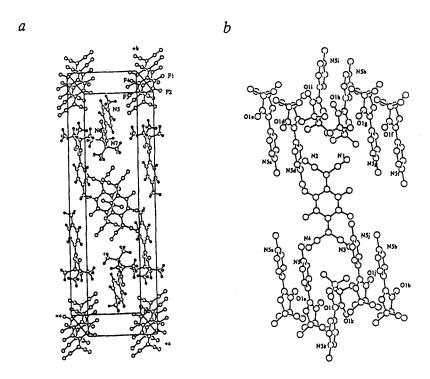


FIGURE 1 (a) The Crystal structure of 1(Me)^{+..}TCNQF4^{-.}, and (b) the view of the contact between one TCNQF4^{-.} molecule and 1(Me)^{+.} molecules in its proximity.

SPIN INTERACTION IN THE CT COMPLEXES OF $1(R)^+ \cdot \cdot \text{TCNQF4}^-$ AND $1(R)^+ \cdot \cdot \text{HCBD}^-$

The situation of spin interaction in the CT complexes of 1(R)+··TCNQF4- and 1(R)+··HCBD-· was shown by the magnetic measurement using a SOUID magnetometer (MPMS, Quantum Design) under an applied magnetic field of 500 G in the temperature range of 5 to 300 K. The molar paramagnetic susceptibility (χ_p) at each temperature was obtained by correcting the diamagnetic contribution calculated from Pascal's constants. The temperature dependences of the product of X_D and temperature $(X_D \cdot T)$ are shown in Figures 2 and 3 for the CT complexes of 1(R)+ with TCNQF4- and HCBD, respectively. As is seen from the figures, the following characteristics can be pointed out. (1) For the three CT complexes of 1(Me)+..TCNQF4-, 1(Me)+..HCBD- and 1(Pr)+··TCNQF4-· there was a steep increase in the χ_{p} ·T value with a lowering temperature below ca. 10 K, suggesting the dominance of ferromagnetic interaction. This was confirmed by investigating the field (H) dependence of the magnetization (M) at 2, 5 and 10 K, respectively, as shown in Figure 4. Thus, the lower the temperature, the more rapid the M value approached to saturation. The values of saturation magnetization are estimated ca. 4,000, 4,800 and 5,200 emu·G/mol for 1(Me)+··TCNQF4-·, 1(Me)+·· HCBD- and 1(Pr)+. TCNQF4-, respectively. These corespond to 72, 87 and 94% of the value (ca. 5,500 emu·G/mol) expected for the surviving 1(R)+· spin entity, since the radical anion partner becomes spinless as a result of a tight dimer formation. Accordingly, there is a spin loss of ca. 5 to 25%, depending upon the kind of CT complex. As for this cause the disorder in the arrangement of NO groups in the crystal is conceivable, as seen in 1(Me)+..TCNQF4-.. For this CT complex the O atom of NO group is arranged at both N atoms on the imidazoline ring and the ratio is 83.7:16.3. Assumed that the preferred arrangement is reponsible of a ferromagnetic interaction between the two neighboring spins, the amount involved in the interaction might be reduced to $(0.837)^2 \times 100 = 70\%$, which is well consistent with the experimental result (ca. 72%). Supposedly the degree of disorder of NO group is smaller for the other CT complexes according to this consideration. The crystal structure analysis of the two remaining CT complexes is by all means necessary to confirm this argument. Furthermore it remains to be elucidated how the arrangement of NO group in the crystal is different between these CT complexes and the others which exhibited weak antiferromagnetic interaction. (2) For all CT complexes the χ_{p} ·T value tends to increase with an increasing temperature in the high temperature region. The magnitude of slope is different by the kind of CT complex. This behavior can be explained by considering the presence of a thermally-accessible triplet of the TCNQF4" or HCBD" spin pair in the

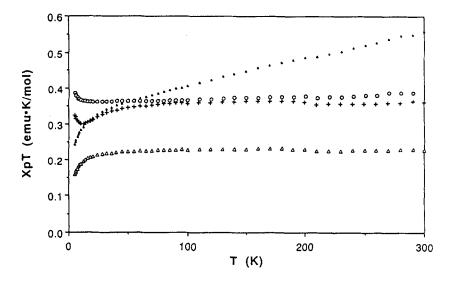


FIGURE 2 Temperature dependence of χ_p ·T for the CT complexes of TCNQF4⁻⁻ with $1(Me)^+$ · (+), $1(Et)^+$ · (\triangle), $1(Pr)^+$ · (\bigcirc) and $1(Bu)^+$ · (\triangle) in the temperature range of 5 to 300 K.

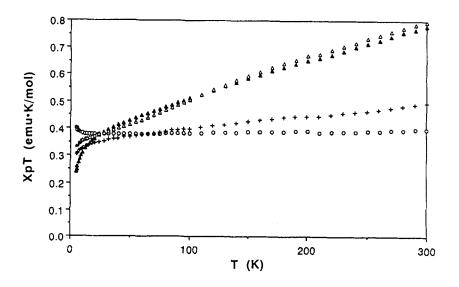


FIGURE 3 Temperature dependence of χ_p ·T for the CT complexes of HCBD- with $1(Me)^+$ · (0), $1(Et)^+$ · (\triangle), $1(Pr)^+$ · (\triangle) and $1(Bu)^+$ · (+) in the temperature range of 5 to 300 K.

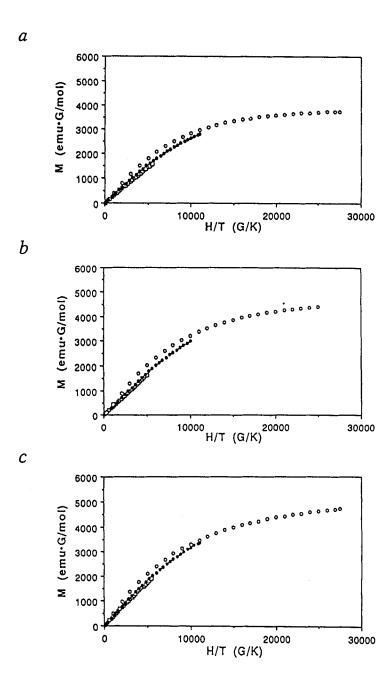


FIGURE 4 Field (H) dependence of the magnetization (M) at 2 (O), 5 (\bullet) and 10 K (\Box) for (a) 1(Me)+··TCNQF4-·, (b) 1(Me)+··HCBD-· and (c) 1(Pr)+··TCNQF4-·.

singlet ground state, judging from the crystal structure of $1(Me)^{+\cdot\cdot}TCNQF4^{-\cdot}$. (3) The $\chi_p \cdot T$ of $1(Bu)^{+\cdot\cdot}TCNQF4^{-\cdot}$ in the high temperature region is fairly small (ca. 0.22 emu·G/mol) as compared with the value (0.375 emu·G/mol) expected for one S=1/2 spin entity. This suggests the possibility of spin pair formation in the $1(Bu)^{+\cdot}$ radical cation as well as the TCNQF4- radical anion. Attempt to get the single crystal is still unsuccessful, which is required for the X-ray structure analysis. (4) The powdered sample of CT complexes was used for all magnetic measurements as mentioned above. It is necessary to be checked whether there is difference in magnetic properties between the powdered and crystalline samples. Figure 5 shows the magnetic results obtained by

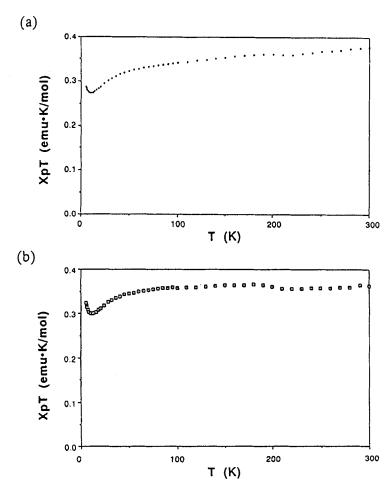


FIGURE 5 Temperature dependence of χ_p ·T for (a) powdered and (b) crystalline samples of 1(Me)+··TCNQF₄-· in the temperature range of 5 to 300 K.

using the powdered and crystalline samples of $1(Me)^+\cdot TCNQF4^-\cdot$ under the same condition. Almost no difference was recognized between both samples, although there was a slightly larger decrease of χ_p . T with a lowering temperature for the powdered one. Based on this result, the magnetic measurement of $1(Me)^+\cdot TCNQF4^-\cdot$, $1(Me)^+\cdot HCBD^-\cdot$ and $1(Pr)^+\cdot TCNQF4^-\cdot$ at lower temperatures than 5 K was performed by using their powdered samples.

FERROMAGNETIC PHASE TRANSITION AT 0.4 - 0.55 K IN 1(Me)+··TCNQF4-·, 1(Me)+··HCBD-· AND 1(Pr)+··TCNQF4-·

By the magnetic measurement at lower temperatures than 5 K it was found that the CT complexes exhibited a ferromagnetic phase transition between 0.4 and 0.55 K. 14 The ac magnetic susceptibility (χ_{ac}) was measured down to ca. 40 mK in a 3 He - 4 He dilution refrigerator at the ac magnetic field of ca. 4 nT (127 Hz). The plot of χ_{ac} against temperature is shown in Figure 6, in which peak maxima albeit in a slightly round shape appear at 0.22, 0.33 and 0.40 K for 1(Me)+··TCNQF4-··, 1(Me)+··HCBD-·· and 1(Pr)+··TCNQF4-··, respectively. These peak temperatures should not, however, be

$$\begin{array}{c|c}
 & NC \\
 & NC \\
 & NC \\
 & F \\
 & F
\end{array}$$

$$\begin{array}{c}
 & CN \\
 & CN$$

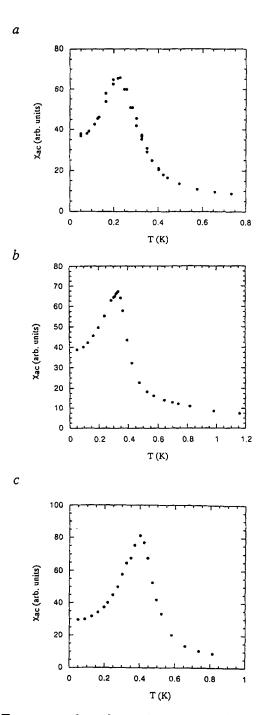
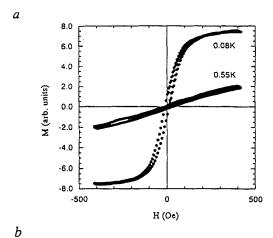
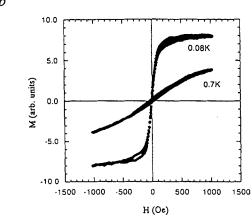




FIGURE 6 Temperature dependence of the ac magnetic susceptibility (χ_{ac}) below 0. 8 K for (a) 1(Me)+··TCNQF4-·, (b) 1(Me)+··HCBD-· and (c) 1(Pr)+··TCNQF4-·.

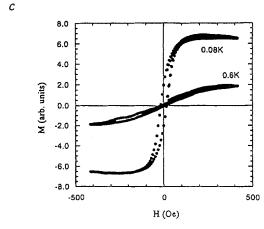


FIGURE 7 Hysteresis magnetization front and rear the ferromagnetic phase transition for (a) $1(Me)^{+} \cdot TCNQF4^{-}$, (b) $1(Me)^{+} \cdot HCBD^{-}$ and (c) $1(Pr)^{+} \cdot TCNQF4^{-}$.

assigned as the ferromagnetic phase transition temperatures (T_C 's). Rather T_C can be defined in the present study as a temperature where χ_{aC} starts to rapidly increase. There is a slight difference (0.1 - 0.2 K) between the T_C and the peak temperature. When the M - H curves were measured above and below T_C , a typical ferromagnetic hyster is was observed below T_C (see Figure 7). Both coercive forces (\leq 20 Oe) and saturation fields are low for the three CT complexes like the other organic ferromagnets recently discovered.⁴⁻⁸ It should be noted that the estimated saturation moments at the lowest temperature were ca. 0.5 μ_B /formula unit (f.u.) or less than 1 μ_B /f.u. expected for one S = 1/2 spin entity. The main cause of this reduction of the magnetic moment might be attributed to magnetic fluctuations resulting from the low-dimensional character of these CT complexes, as seen from the crystal structure of 1(Me)+··TCNQF4-· (see Figure 1).

CONCLUSION

The present CT complexes make a group of another type of CT complex-based organic ferromagnets without any magnetic metal elements. The first one has been discovered in a fullerene/tetrakis(dimethylamino)ethylene CT complex ($T_c = 16.1 \text{ K}$), 15 whose magnetic details, however, still now remain to be eleucidated because of insufficient structural characterization due to the extreme instability in air. In contrast, the present CT complex-based organic ferromagnets are quite stable in air and have a definitive 1:1 compostion of the radical cation and the radical anion. Through theoretical consideration in combination with the crystal structure data, the origin of this ferromagnetism will be continuously pursued. When this problem is cleared up, the information will serve as a reliable guiding principle for the synthesis of CT complex-based organic ferromagnets.

ACKNOWLEDGEMENT

We thank Professor M. Kinoshita for discussion and suggestions. This work was supported by a Grant-in-Aid for Scientific Research on Priority Area "Molecular Magnetism" (Area No. 228/04242104) from the Ministry of Education, Science and Culture, Japan.

REFERENCES

- 1. J. S. Miller and A. J. Epstein, Angew. Chem. Int. Ed. Engl., 33, 385 (1994).
- 2. K. Mukai, Bull. Chem. Soc. Jpn., 42, 40 (1969).
- K. Itoh, 1993 Report on Molecular Magnetism, a Scientific Research on Priority Area supported by a Grant-in-Aid from the Ministry of Education, Science and Culture.

- 4. M. Tamura, Y. Nakazawa, D. Shiomi, K. Nozawa, Y. Hosokoshi, M. Ishikawa, M. Takahashi, and M. Kinoshita, *Chem. Phys. Lett.*, **186**, 401 (1991).
- R. Chiarelli, M. A. Novak, A. Rassat, and J. L. Tholence, *Nature*, 363, 147 (1993).
- T. Nogami, K. Tomioka, T. Ishida, H. Yoshikawa, M. Yasui, F. Iwasaki, H. Iwamura, N. Takeda, and M. Ishikawa, Chem. Lett., 1994, 29.
- T. Ishida, H. Tuboi, T. Nogami, H. Yoshikawa, M. Yasui, F. Iwasaki, H. Iwamura, N. Takeda, and M. Ishikawa, Chem. Lett., 1994, 919.
- T. Sugawara, M. M. Matsushita, A. Izuoka, N. Wada, N. Takeda, and M. Ishikawa, J. Chem. Soc., Chem. Commun., 1994, 1723.
- J. S. Miller, J. C. Calabrese, H. Rommelmann, S. Chittipeddi, Z. H. Zhang, W. M. Reiff, and A. J. Epstein, J. Am. Chem. Soc., 109, 769 (1987).
- W. E. Broderick, J. A. Thompson, E. P. Day, and B. M. Hoffmann, Science, 249, 401 (1990)
- 11. G. T. Yee, J. M. Manriquez, D. A. Dixon, R. S. McLean, D. M. Groski, R. B. Flippen, K. S. Narayan, A. J. Epstein, and J. S. Miller, *Adv. Mater.*, 3, 309 (1991).
- 12. W. E. Broderick and B. M. Hoffmann, J. Am. Chem. Soc., 113, 6334 (1991).
- T. Sugimoto, M. Tsujii, E. Murahashi, H. Nakatsuji, J. Yamauchi, H. Fujita, Y. Kai, and N. Hosoito, Mol. Cryst. Liq. Cryst., 232, 117 (1993).
- T. Sugimoto, M. Tsujii, T. Suga, H. Matsuura, N. Hosoito, N. Takeda, M. Ishikawa, and M. Shiro, Technical Report of ISSP, Ser. A, No. 2854, 1 (1994).
- 15. P.-M. Allemand, K. C. Khemani, A. Koch, F. Wudl, K. Holczer, S. Donovan, G. Gruner, and J. D. Thompson, *Science*, 253, 301 (1991).